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We examined the effects of side-dominance on the laterality of standing

stability using ground reaction force, motion capture (MoCap), and EMG

data in healthy young adults. We recruited participants with strong right (n =

15) and left (n = 9) hand and leg dominance (side-dominance). They stood on

one or two legs on a pair of synchronized force platforms for 50 s with 60 s rest

between three randomized stance trials. In addition to 23CoP-related variables,

we also computed six MoCap variables representing each lower-limb joint

motion time series. Moreover, 39 time- and frequency-domain features of EMG

data from five muscles in three muscle groups were analyzed. Data from the

multitude of biosignals converged and revealed concordant patterns: no

differences occurred between left- and right-side dominant participants in

kinetic, kinematic, or EMG outcomes during bipedal stance. Regarding single
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leg stance, larger knee but lower ankle joint kinematic values appeared in left vs

right-sided participants during non-dominant stance. Left-vs right-sided

participants also had lower medial gastrocnemius EMG activation during

non-dominant stance. While right-side dominant participants always

produced larger values for kinematic data of ankle joint and medial

gastrocnemius EMG activation during non-dominant vs dominant unilateral

stance, this pattern was the opposite for left-sided participants, showing larger

values when standing on their dominant vs non-dominant leg, i.e., participants

had a more stable balance when standing on their right leg. Our results suggest

that side-dominance affects biomechanical and neuromuscular control

strategies during unilateral standing.
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balance, hand dominance, laterality, leg-dominance, motion capture, posture

Introduction

Functions such as language, speech, or face recognition show

localization to one side of the brain. This phenomenon is called

hemispheric lateralization. Due to the evolutionary specialization

of the left hemisphere for skilled motor activities (Goodale, 1988;

Gonzalez and Goodale, 2009; Stone et al., 2013), 90% of healthy

adults are right-hand dominant and perform fundamental

manual motor tasks with the right hand (Perelle and Ehrman,

2005; Vuoksimaa et al., 2009; Sartarelli, 2016). This behavioural

asymmetry is known as “right-handedness” or “right-hand

dominance”. The nature of hand dominance is also a

consequence of brain lateralization through complex motor

control processes (for reviews, see (Hatta, 2007; Sainburg,

2014)). Specifically, left-handedness is a marker of atypical

cerebral lateralization. Unlike the upper limbs, the

determination of leg dominance is more complicated because

leg vs hand dominance is much less lateralized and seems to be

task-dependent (Gabbard and Hart, 1996). Most of the leg

dominance tasks are performed under bilateral conditions so

that one leg stabilizes the system while the other leg moves as in

kicking a ball, stepping up on a chair, or high jumping. The

consensus suggests the mobilizing limb is the dominant leg in

lower extremity tasks requiring two legs, an idea also supported

by neurodevelopmental studies (Pompeiano, 1985; Previc, 1991).

These studies suggest that the left leg subserves postural tasks

while the right leg concurrently generates voluntary movements.

Such functional organization is due to the asymmetric prenatal

development of the vestibular function on the left side.

Consequently, it may be not surprising that the left leg is

suggested to be the preferred limb for tasks of unipedal

stability (Maki, 1991). Overall, it seems that right-hand

dominant people tend to be right-legged.

Feedback from lower extremity proprioceptors shapes

postural stability in standing (Allum et al., 1998). Joint

position sense (JPS) measurements reveal proprioceptive

function at the knee (Barrett et al., 1991) and ankle

(Konradsen, 2002) joints. Strongly right-side dominant

individuals consistently sense movements more accurately in

both upper and lower extremity joints of the non-dominant left

vs the right-dominant side (Roy and MacKenzie, 1978; Kurian

et al., 1989; Nishizawa, 1991; Goble et al., 2006; Goble and Brown,

2007, 2008; Han et al., 2013; Negyesi et al., 2019). We also found

that left-sided participants performed a target-matching task

more accurately with their dominant left vs right knee joint

(Galamb et al., 2018). These data suggest that right-hemisphere

specialization may underlie proprioceptive feedback (Naito et al.,

2005; Goble and Brown, 2007, 2008), regardless of hand and leg

dominance (side dominance). This idea is supported by clinical

data demonstrating postural impairments including the side

ipsilateral to a right-hemisphere stroke (Bohannon et al.,

1986; Perennou et al., 2008; Duclos et al., 2015). It thus seems

that central and peripheral functional asymmetry may differ

between left-vs right-side dominant individuals. Therefore,

further research is needed to resolve the differences in co-

lateralization of postural stability between left- and right-side

dominant healthy adults.

Balance is a fundamental motor skill that underlies gait and

posture through the activation of muscular synergies (Torres-

Oviedo and Ting, 2007; Chvatal and Ting, 2012) generated by the

central nervous system (CNS) (Winter 1995; Winter et al., 2003).

Proprioceptive feedback from the lower extremity joints forms an

important element of this control. Static balance is the

maintenance of the equilibrium under unperturbed conditions

such as during quiet standing (Papegaaij and Hortobágyi, 2017).

Standing balance stability can be assessed by multiple ways,

including kinetics, kinematics, and neural control via

electromyography (EMG). During quiet standing, the base of

support is fixed and balance is maintained by countering torques

produced by the gravitational force around the center of mass

(CoM). As a result, the center of pressure (CoP) shifts within the

base of support. Because balance is controlled by keeping the

position of the CoM between the weight-bearing limbs (Gray,

1944), kinetic data of CoP movements provide information on
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how the CNS controls standing stability through the involvement

of three synergistic muscle groups (Krishnamoorthy et al., 2004).

Short CoP paths are associated with high standing stability

(Lepers et al., 1997). Whether or not leggedness affects bi- or

unipedal standing stability is unclear. CoP path does not seem to

differ between dominant vs non-dominant leg during unilateral

(Matsuda et al., 2008; Lopez-Fernandez et al., 2020) and bipedal

(Haddad et al., 2011) stance. Perhaps CoP path data are not

sensitive enough for detecting leg-differences in standing

stability. Especially, because these studies only recruited right-

side dominant participants and limited their analysis only to CoP

data. Such data form a resultant outcome that condenses

information on the whole-body posture and information on

postural accelerations into one two-dimensional (2D) variable

(Federolf, 2016). Nevertheless, examining a variety of traditional

CoP metrics including sway, velocity, and area of ellipse (Prieto

et al., 1996; Rocchi et al., 2004; Sun et al., 2018) is fundamental

and important for the assessment of standing stability.

Because athletes often encounter situations in which theCoM

is controlled while standing on one leg, CoP paths and velocity

are complementary to CoM outcomes in indexing standing

stability (Vuillerme et al., 2001; Paillard et al., 2006). A

complimentary approach to assessing balance stability is

kinematics, using motion capture (MoCap). Specifically, by

affixing reflective markers over anatomical landmarks, we can

measure body kinematics by a motion capture system that

determines the positions of the markers (Alradwan et al.,

2015). Briefly, several camera recordings are used by the

system to calculate trajectories of the markers or the position

and orientation of the rigid bodies, and to estimate the motions of

the underlying bones to produce joint kinematics data (Cappozzo

et al., 2005). Lower limb joint angular kinematics via MoCap is

widely used in the last few decades to analyze postural control

(reviewed in (Roggio et al., 2021)). While CoP provides

information only about foot-related events, MoCap data

informs us about CoM displacement and other descriptive

aspects of standing balance stability. With respect to stability,

measuring a set of variables representing change and deviation

for each lower extremity joint motion time series, e.g., range, total

movement, velocity, or acceleration would shed light on the

laterality effects on standing stability.

Ultimately, the neural command controls kinetic and

kinematic features by activating muscle groups and muscle

synergy modules. Specifically, earlier studies using principal

component analysis (PCA) identified that muscles are not

independently controlled but work in groups in various tasks

requiring shifts of the CoP (Krishnamoorthy et al., 2003a;

Krishnamoorthy et al., 2003b). Therefore, EMG data analyses

from five muscles in these three synergistic muscle groups

(anterior leg muscles, posterior leg muscles, trunk muscles)

responsible for controlling posture (Krishnamoorthy et al.,

2004) can provide insights into the neural control of stability

while standing (Danna-Dos-Santos et al., 2015). The relationship

between standing and walking balance abilities and muscle

activation is well described (Papegaaij and Hortobágyi, 2017;

Cinthuja et al., 2021). The literature (Phinyomark et al., 2012a; b;

Phinyomark et al., 2014; Karthick and Ramakrishnan, 2016;

Khushaba et al., 2017; Samuel et al., 2018; Waris and

Kamavuako, 2018; Too et al., 2019; Verma and Gupta, 2019;

Toledo-Pérez et al., 2020) also reports a wide spectrum of time-

and frequency-domain features of the EMG signal that could help

to determine if the synergistic muscles’ activity contributes to the

potential differences, if any, between left- and right-side

dominant individuals during bi- and unipedal stance.

It is unclear if the aforementioned three methods produce

complementary results when used in combination, a

measurement scheme rarely used. Therefore, the primary

objective of the present study was to examine whether side-

dominance affects the laterality of bi- and unilateral postural

stability during quiet standing in healthy younger adults using a

multitude of biosignal processing methods: CoP, MoCap, and

EMG data. Based on the preponderance of data from previous

studies suggesting right-hemisphere specialization for standing

stability, we hypothesize right-side dominant participants to have

more stable standing balance in their non-dominant left vs right-

dominant leg. However, left-sided participants may have more

stable standing balance in their dominant left as compared to

their non-dominant right leg. Consequently, during non-

dominant unilateral stance, we expect more stable standing

balance in right-compared to left-sided participants but vice

versa during dominant leg stance. We also hypothesize that

these between-group and within-group differences will be

concordantly reflected across measures of kinetics, kinematics,

and muscle activation. Our study fits under the current research

efforts towards understanding the effects of side-dominance on

postural control.

Methods

Participants

Sample size calculations (G*Power 3.1.7 (Faul et al., 2007))

based on a previous study (Danna-Dos-Santos et al., 2015) that

aimed to determine the effects of visual information on multi-

muscle control during quiet stance, revealed that a total sample

size of 16 would be appropriate to detect significant differences

between the groups, assuming type I error of 0.05 and power

of 0.80.

A large number of potential participants were asked to fill out

two inventories to clarify their hand and leg dominance. Hand

dominance was determined using the Edinburgh Handedness

Inventory (Oldfield, 1971), a scale that is used to measure the

degree of hand laterality in daily activities such as writing,

drawing, throwing, using scissors, brushing teeth, opening a

box, striking a match and using a pair of scissors, a knife, a

Frontiers in Physiology frontiersin.org03

Négyesi et al. 10.3389/fphys.2022.965702

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.965702


spoon, and a broom. Leg dominance was determined by one- or

two-foot item skill tests such as kicking a ball or stepping up on a

chair (Spry et al., 1993). Laterality index (LI) for both hand and

leg dominance was calculated by summing the number of tasks

performedwith the right limb (R) and the number of tasks performed

with the left limb (L) as follows (R - L)/(R + L). The required level of

laterality for both hand and leg dominance was LI ≥ 0.9.

We finally recruited nine left-side dominant (age = 27.9 ±

5.8 years; height = 179.2 ± 7.6 cm; mass = 76.3 ± 8.2 kg; three

females) and 15 right-side dominant (age = 28.2 ± 5.5 years;

height = 173 ± 8.2 cm; mass = 67.9 ± 13.3 kg; six females)

participants who met our laterality conditions with no

reported neurological deficit or sensorimotor impairment.

Laterality index for both hand and leg dominance was ≥0.9 in
right-side dominant, and ≥ -0.9 in left-side dominant

participants, showing strong right- or left-side dominance,

respectively. After giving both verbal and written

explanations of the experimental protocol, participants

signed the informed consent document in accordance with

the declaration of Helsinki. The study was carried out in

accordance with the recommendations of the University

Ethical Committee (Approval No. TE-KEB:2:2021).

Experimental design

Each participant performed barefoot bi- and unilateral

(with both the dominant and non-dominant leg) quiet

standing trials on either two or one force plate,

respectively, both with eyes-open in a randomized order.

Participants were asked to stand as still as possible during

each trial. Each trial lasted for 50 s with a rest period of 60 s

between trials (Garcia-Masso et al., 2016). Each participant

adopted the same foot placement and posture during the

tasks: 1.) during bipedal stance, the participants’ heels were

separated by the width of their shoulders and their toes

pointed forward, while 2.) during unilateral stance,

participants were asked to raise their heel by flexing their

non-supporting leg’s knee joint at 90° to ensure the absence

of contact between the foot and the floor during the trial.

Only successful trials were considered, therefore, if the

participants bent their trunk or arms, or touched down

with the non-supporting leg, the trial was repeated after a

recovery period of 60 s. Nevertheless, the frequency of

failures was very low and did not differ between right and

left-side dominant participants neither during dominant nor

during non-dominant unilateral stance. During each trial,

participants were instructed to look at a point of reference

(5 cm in diameter) placed in front of them at eye level at a

distance of 2 m and keep their arms down by their side. The

CoP, MoCap, and EMG recordings were synchronized in

time by starting the data analyses from a trigger signal that

appeared in all channels.

Experimental procedures

CoP-related kinetics
Ground reaction force (GRF) was measured by a pair of

synchronized force platforms (P-6000, BTS Bioengineering

SnA., Garbagnate Milanese MI, Italy) at a sampling rate of

1 kHz. The two platforms recorded the GRF in a common

reference frame that coincided with the MoCap system’s

reference frame. During bipedal standing, one foot was

placed on each platform. The platforms are able to

measure the CoP (point of attack of the GRF), the

magnitude of the GRF in three dimensions, and the torque

around the vertical axis that goes through the CoP.

Kinematics

In addition, participants’ movements were captured via an

optical-based MoCap system (OptiTrack, 18 pieces of

Flex13 cameras, NaturalPoint Inc., Oregon, United States ) at

a 100 fps sampling rate using 16 skin-attached retro-reflective

markers placed at anatomical locations (Figure 1A). The 3D

avatar of a representative participant during bi- and unilateral

stances is shown in Figures 1B,C, respectively.

Electromyography (EMG)

To record EMG signals, a Cometa Wave Plus wireless EMG

system with Mini Wave Waterproof units and the

EMGandMotionTools 7.0.10.0 software (Cometa S. r.l.,

Bareggio MI, Italy) were used. EMG signals were recorded on

both sides of the body using surface bipolar electrodes. The

measured muscles and muscle groups were the following: 1.

Posterior muscles: medial gastrocnemius and biceps femoris, 2.

Anterior muscles: tibialis anterior and rectus femoris, 3. rectus

abdominis (Figure 1A). Electrodes were placed according to the

recommendations of the SENIAM project (seniam.org) on the

muscular belly with an inter-electrode distance of approximately

20 mm. The sampling frequency was 2000 Hz.

Data analyses

CoP-related kinetic data
The CoP-sway time-series collected were jointly defined by

anterior-posterior (AP) and medio-lateral (ML) direction signals.

Considering that the analysis of phase lag or time-related signal

features was unnecessary in the present study, the AP and ML

time-series were first filtered at 5 Hz using a 4th order

Butterworth low pass filter (Prieto et al., 1996; Sun et al.,

2018), then referenced to the mean CoP. Furthermore, the

resultant distance time series was calculated to quantify the
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CoP signal in the combined AP and ML directions. The first

second of data was excluded from the analysis to eliminate the

filter’s transient response. To analyze the CoP-sway and assess

standing stability, a total of twenty-three variables (Table 1) were

computed from both the independent AP and ML time-series as

well as the resultant distance time-series using MATLAB®

(MATLAB R2021b, MathWorks, Natick, MA, United States ).

A variety of traditional CoP metrics often used in literature

(Prieto et al., 1996; Rocchi et al., 2004; Sun et al., 2018) were

determined from the CoP data, including: the mean distance

(mdist), standard deviation (SD), root mean square distance

(RMS_dist), range (range), path length (pathlength), mean

velocity (mvelo), 95% confidence ellipse area (area_ce), fractal

dimension (fd), sway area (area_sw) and mean frequency

(mfreq). Moreover, the sample entropy (SampEn) was

evaluated to analyze the regularity and complexity of the CoP-

sway signal. Briefly, SampEn is the negative logarithm of the

conditional probability that a dataset having repeated itself form

samples within a tolerance r will also repeat itself for m+1

samples, excluding self-matches. The SampEn algorithm was

obtained from Richman et al. (Richman and Moorman, 2000).

A range ofm values from 2 to 9 and r values from 0.01 to 0.9 were

examined and the parametersm = 2 and r = 0.01 were found to be

appropriate for our data. The signal length was fixed at N =

FIGURE 1
Experimental setup. Panel (A): Schematic illustration of the measuredmuscles for EMG analysis, and the placement of the reflective markers for
motion capture measurements. Panel (B) and (C): 3D avatar of a representative subject’s lower limbs during bi- and unilateral stances, respectively.
Muscles: bic. fem., biceps femoris;med. gastr., medial gastrocnemius; rect. abd., rectus abdominis; rect. fem., rectus femoris; tib. ant., tibialis anterior.
Markers: LANK/RANK, left/right lateral malleolus; LASI/RASI, left/right anterior superior iliac spine; LHEE/RHEE, left/right heel (bisection of the
distal aspect of the posterior calcaneum); LKNE/RKNE, left/right knee (lateral epicondyle of the femur); LPSI/RPSI, left/right posterior superior iliac
spine; LTHI/RTHI, left/right thigh (not an exact location, only to aid with sides); LTIB/RTIB, left/right shank (not an exact location, only to aid with
sides); LTOE/RTOE, left/right toes (between the distal ends of the 1st and 2nd metatarsi).
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TABLE 1 Variables computed for CoP analysis

Description of CoP data obtained from force plate

Time series Abbreviation Unit Description Equation

Raw CoP time series (AP, ML) AP0; ML0 mm Time series describing the CoP path relative to the origin of the force platform in the anterior-posterior (AP; z-axis) and medial-lateral (ML; x-axis)
directions

N.A. (directly recorded from force plate)

Signal filtered using 4th order Butterworth low pass filter with 5 Hz cutoff frequency (Prieto et al., 1996; Sun et al., 2018) First second (=1000 samples) of signal cut out to eliminate the filter transient effect.

CoP time series referenced to mean (AP, ML) AP; ML Mm CoP path time series describing the change of CoP relative to the mean CoP value AP= AP0 - mean(AP0)

ML= ML0 - mean(ML0)

Resultant Distance time series (comb. AP
and ML)

Rd Mm Resultant distance time series describing vector distance from mean CoP to pair of points in AP0 and ML0 rd � √(AP2 +ML2)

Traditional CoP measures (Prieto et al., 1996)

Variable name Abbreviation Unit Description Equation

Fractal dimension - 95% Confidence Ellipse Fd - Fractal dimension is a unitless measure of the degree to which a curve fills the metric space which it encompasses. Fractal dimension confidence ellipse
models the area of the stabilogram with the 95% confidence ellipse

fd � log(N)/log( N*d
pathlength)

d � √(2a*2b)
Mean Distance Mdist Mm Mean resultant distance; average distance from the mean CoP mdist � mean(rd)
Mean Distance AP mdist_AP Mm Average AP distance from mean CoP mdist AP � mean(|AP|)
Mean Distance ML mdist_ML Mm Average ML distance from mean CoP mdist ML � mean(|ML|)
Mean Frequency mfreq Hz Mean frequency is the rotational frequency, in revolutions per second or Hz, of the CoP if it had traveled the total excursions around a circle with a

radius of the mean distance
mfreq � mvelo

2π*mdist

Mean Velocity mvelo mm/s Average velocity of resultant CoP mvelo � pathlength
T

Mean Velocity AP mvelo_AP mm/s Average velocity of CoP path in the AP direction mvelo AP � pathlength AP
T

Mean Velocity ML mvelo_ML mm/s Average velocity of CoP path in the ML direction mvelo ML � pathlength ML
T

Path Length pathlength Mm Total length of resultant distance CoP path pathlength � ∑√[(AP(n + 1) − AP(n))2 + (ML(n + 1) −ML(n))2]
Path Length AP pathlength_AP Mm Total length of CoP path in the AP direction pathlength AP � ∑ |AP(n + 1) − AP(n)|
Path Length ML pathlength_ML Mm Total length of CoP path in the ML direction pathlength ML � ∑ |ML(n + 1) −ML(n)|
Range Range Mm Maximum distance between any 2 points on the CoP resultant distance range � |max(rd) −min(rd)|
Range AP range_AP Mm Maximum distance between any 2 points on the CoP path in the AP direction range AP � |max(AP) −min(AP)|
Range ML range_ML Mm Maximum distance between any 2 points on the CoP path in the ML direction range ML � |max(ML) −min(ML)|
Root Mean Square distance RMS_dist Mm RMS distance from mean CoP for resultant distance time series RMS dist � √( 1

N∑ rd2)
Standard Deviation SD Mm Standard deviation of resultant distance (rd) time series SD � √( 1

N∑ (rd −mdist)2)
Standard Deviation AP SD_AP Mm Standard deviation of AP time series SD AP � √( 1

N∑AP2)
Standard Deviation ML SD_ML Mm Standard deviation of ML time series SD ML � √( 1

N∑ML2)
Sway Area area_sw mm2/s Sway area estimates the area enclosed by the CoP path per unit of time. Approximated by summing the area of the triangles formed by two consecutive

points on the CoP path and the mean CoP
area sw � 1

2T∑ |AP(n + 1)ML(n) − AP(n)ML(n + 1)|

95% Confidence Ellipse Area area_ce mm2 The 95% confidence ellipse area is the area of the 95% bivariate confidence ellipse, which is expected to enclose approximately 95% of the points on the
resultant distance CoP path

areace � πab

a � √(F0.5[2,n−2](SD2
AP + SD2

ML +D))

(Continued on following page)

Fro
n
tie

rs
in

P
h
ysio

lo
g
y

fro
n
tie

rsin
.o
rg

0
6

N
é
g
ye

si
e
t
al.

10
.3
3
8
9
/fp

h
ys.2

0
2
2
.9
6
5
70

2

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.965702


24,000 samples for all the SampEn computations and the total

sample entropy was determined as the average of SampEn results

for consecutive signal intervals of size N starting from the end of

the signal. Table 1 presents and defines all the CoP-based

variables computed in this study. To control for weight

distribution during bipedal stance, the symmetry index

(Rougier and Genthon, 2009; Hendrickson et al., 2014) was

calculated using the total GRF measured under each foot

from the left and right force platforms.

Symmetry index � Dominant limb value

Non − dominant limb value +Dominant limb value

The symmetry index can range between 0 and 1. A symmetry

index of 0.5 indicates that the values for the dominant and non-

dominant limbs are equal, i.e., represents perfect symmetry. If

the index is greater than 0.5, the dominant vs. non-dominant

limb has a greater value of weight distribution during bipedal

stance.

Kinematic data acquired from MoCap
analysis

Experimental marker placement was replicated on a

lower limb model in OpenSim 4.3 (Delp et al., 2007; Seth

et al., 2018), a software for biomechanical modeling,

simulation and analysis of movement. The model was

scaled for each subject and inverse kinematics were solved

to determine the joint angles describing the motion in each

trial. The rotational movements calculated were the pelvic

list, tilt and rotation, hip flexion, rotation and adduction,

and knee and ankle flexion. Pelvic translational motion was

also included in the analysis. The joint motion time series

were filtered using a 4rth order Butterworth low pass filter

with a cut-off frequency of 5 Hz (Schurr et al., 2017).

Moreover, the first second of all signals was excluded to

eliminate the filter’s transient response. To evaluate standing

stability, a set of variables representing change and deviation

for each joint motion time series were computed in

MATLAB® (MATLAB R2021b, MathWorks, Natick, MA,

United States ), including: the standard deviation (sd),

range (range), total movement (totmov), root mean square

velocity (rvelo), root mean square acceleration (raccel), and

mean percentage index (mpi). The motion capture analysis

variables used in this study are summarized and defined in

Table 2.

EMG data

The EMG data from all 10 channels was obtained from five

different muscles of both the left and right lower limbs during

each standing condition. First, wavelet filters were applied using

MATLAB® (Misiti et al., 1996) to remove any unwanted artifactsT
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in the signal obtained. In this study, we used wavelet filters

between 30 and 500 Hz to reduce the effects of high-frequency

noise and low-frequency artifacts in the EMG signals. In

MATLAB ‘wfilters ( )’ returns the four lowpass and highpass,

decomposition, and reconstruction filters associated with the

orthogonal or biorthogonal wavelet. In order to set the cut-off

frequencies to make the custom wavelet filter, we decomposed

the EMG signals into 13 levels and reconstructed from levels 2 to

5 of decomposed signals with symlet mother wavelet (Sym5).

More details can be found elsewhere (Vidakovic and Mueller,

1994). Following that, 39 different time- and frequency-domain

features were extracted from each channel of the filtered signal. A

brief description of the examined EMG features, their

abbreviations, the corresponding equations, and the relevant

references are shown in Table 3.

Statistical analyses

Statistical analyses were performed using SPSS Statistics

Package (version 22.0, SPSS Inc., Chicago, IL, United States ).

Variables were normally distributed, measured by Shapiro–Wilk’s

TABLE 2 Variables computed for MoCap analysis

Motion time series obtained from Inverse Kinematics

Motion time series Abbreviation Unit Description

Pelvis list pelvis_list degrees Pelvis forward-backward
rotational motion

Pelvis tilt pelvis_tilt degrees Pelvis right-left rotational
motion

Pelvis rotation pelvis_rotation degrees Pelvis internal-external
rotation

Pelvis medial-lateral translation pelvis_tx m Pelvis right-left translation

Pelvis anterior-posterior translation pelvis_ty m Pelvis forward-backward
translation

Pelvis cranial-caudal translation pelvis_tz m Pelvis upward-downward
translation

Hip flexion hip_flexion degrees Hip forward-backward
rotational motion

Hip rotation hip_rotation degrees Hip internal-external
rotation

Hip adduction hip_adduction degrees Hip right-left rotational
motion

Knee flexion knee_angle degrees Knee forward-backward
rotational motion

Ankle flexion ankle_angle degrees Ankle upward-downward
rotational motion

Variables computed for each motion time series (y) for MoCap analysis

Variable
name

Abbreviation Unit Description Equation

Standard
deviation

Sd Degrees m Standard deviation of the rotational or translational joint motion time series sd � √( 1
N∑ (y −mean(y))2)

Range Range Degrees m Maximal amplitude of rotational movement or translational movement:
maximum distance between any 2 points of the motion time series

range � |max(y) −min(y)|

Total movement Totmov Degrees m Total length of time series representing total rotational or translational
movement

totmov � ∑√[(y(n + 1) − y(n))2]

RMS velocity Rvelo degrees/s
m/s

Root mean square velocity of rotational or translational motion rvelo � √( 1
N∑ (dydt)2)

RMS acceleration Raccel degrees/s2

m/s2
Root mean square acceleration of rotational or translational motion raccel � √( 1

N∑ (d2ydt2 )2)

Mean percentage
index

Mpi %, deg %, m Average percent change in position from base position PI � y(n+1)−y(n)
y(n) *100%

mpi � mean(PI)
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TABLE 3 Variables computed for EMG analysis

Time-domain features

Variable name Abbreviation Description Equation

3rd Temporal Moment TM3 Absolute value of cubed EMG signal TM3 � |1k∑k
n�1x3n|

Absolute Value of
Summation of Square Root

ABS_SQRT Motion identification ABS SQRT � |∑k
n�1

����(xn)
√ |

where k is the analysis window

Absolute Value of
Summation of Exponential
Root

ABS_EXP Provides insight on the amplitude of the
signal

ABS EXP � |∑k

n�1(xn ) exp
k |

where exp = 0.5, if ( n ≥ 0.25*k && n ≤ 0.75), else exp = 0.75. and k is the
signal length

Average Amplitude Change AAC Average of the wavelength measurement AAC � 1
k ∑k−1

n�1 |xn+1 − xn|
where k is the signal length

Cardinality CARD Number of unique values within a set Step 1: yn � sort(xn)
Step 2: CARD � ∑k−1

n�1 |yn − yn+1|> ϵ
where ϵ = 0.01

Difference Absolute Mean
Value

DABS_M Modified MAV; estimated signal
amplitude

DABS M � 1
k ∑k−1

n�1 |xn+1 − xn|

Difference Absolute Standard
Deviation Value

DABS_SD Modified standard deviation of the
wavelength

DABS SD �
�����������������
1

k−1 ∑k−1
n�1 (xn+1 − xn)2

√

Difference Variance Value DVAR Modified VAR of EMG DVARV � 1
k−2 ∑k−1

n�1 (xn+1 − xn)2

Enhanced Wavelength ENH_WL Enhanced wavelength ENH WL � ∑k
n�2|(xn − xn−1)p|

where p � (0.75, ifi≥ 0.2ki≤ 0.8k)orp � (0.5)
Enhanced Mean Absolute
Value

ENH_MAV Enhanced MAV ENH MAV � 1
k∑k

n�1|xpn |
where p � (0.75, ifi≥ 0.2ki≤ 0.8k)orp � (0.5)

Integrated EMG INT_EMG Summation of absolute value of signal
amplitude

INT EMG � ∑k
n�1|xn|

where k is the signal length

Kurtosis KURT Statistical technique represent sharpness
of distribution curve

KURT � μ4
σ4

where µ4 is the forth central moment, and is standard deviation

Log Coefficient of Variation LOG_CoV Logarithmic transformation of CoV LOG CoV � log(σμ)
Log Detector LOG Estimate of muscle contraction force LOG � e

1
k∑k

n�1 log(|xn |)

Log Difference Absolute LOG_DABS_M Logarithmic transformation of DABS_M LOG DABS M � log(1k ∑k−1
n�1 |xn+1 − xn|)

Mean Value

Log Difference Absolute
Standard Deviation Value

LOG_DABS_SD Logarithmic transformation of
DABS_SD

LOG DABS SD � log(
�����������������
1

k−1 ∑k−1
n�1 (xn+1 − xn)2

√
)

Log Teager Kaiser Energy
Opertor

LOG_TK_EO Measures instantaneous change in
energy

LOG TK EO � log(∑k−2
n�1(x2

n − (xn−1 × xn+1))

Maximum Fractal Length MFL Measures low level muscle activation MFL � log10(
���������������∑k−1

n�1 (xn+1 − xn)2
√

)
Mean Absolute Deviation MAD Variation between real assessment and

mean assessment
MAD � 1

k (∑k
n−1|xn − �x|)

Mean Absolute Value MAV Average of absolute value of signal
amplitude

MAV � 1
k∑k

n�1|xn|

Mean Value of Square Root M_SQRT Measure to estimate the total amount of
activity in analysis window

M SQRT � 1
k∑k

n�1
��
xn

√

where k is the signal length

Modified Mean Absolute
Value

MAV1 Extension of MAV; wn is added for
robustness

MAV1 � 1
k∑k

n�1wn|xn|
where wn = 1, if 0.25*k ≤ n ≤ 0.75*k else, wn = 0.5

Modified Mean Absolute
Value 2

MAV2 Improvements onMAV1; smoothness of
robustness function

MAV2 � 1
k∑k

n�1wn|xn|
where wn = 1, if 0.25*k ≤ n ≤ 0.75*k

else wn = , if n < 0.25*k

else wn = , otherwise

(Continued on following page)
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test of normality and visual inspection of their histograms.

Separate multivariate analysis of variance (MANOVA) was

applied to comprehensively assess the interaction and/or main

effect of 1) CoP-related kinetic (dimensionless parameters,

parameters for AP direction, parameters for ML direction), 2)

kinematic (hip adduction, hip flexion, hip rotation, knee, ankle),

and 3) EMG (medial gastrocnemius, biceps femoris, tibialis

anterior, rectus femoris, rectus abdominis) variables for the

group (side dominance: right-side dominant [R], left-side

dominant [L]) by the laterality (dominant leg, non-dominant

TABLE 3 (Continued) Variables computed for EMG analysis

Time-domain features

Variable name Abbreviation Description Equation

Myopulse Percentage Rate MYOP Average value of myopulse output MYOP � 1
k∑k

n�1[f(xn)]
where f(x) = 1 if x ≥ threshold, or f(x) = 0, otherwise. And threshold = 0.016

New Zero Crossing NEW_ZC Zero Crossing with improved threshold NEW ZC � ∑k−1
n�1 f(xi, xi+1)

where f(xi, xx+1) � (1, ifxi >Tandxi+1 <Torifxi <Tandxi+1 >T),
otherwise f(xi, xx+1) � 0

and where T � 4( 1
10∑10

n�1xn)
Root Mean Square RMS Root mean square of the signal RMS �

�������
1
k∑k

n�1x2n
√

Simple Square Integral SSI Energy index or the summation of
squared signal amplitude

SSI � ∑k
n�1x2

n

Skewness SKEW Skewness of the signal
SKEW � ∑k

n�1(xn−�x)3
k−1 × σ3

Slope Sign Change SSC Number of times the signal changes
between -ve and +ve slopes

SSC � ∑k−1
n�1[f[(xi − xi−1) × (xi − xi+1)]]

where f(x) = 1, if x ≥ threshold, or f(x) = 0, otherwise. And threshold = 0.01

Standard Deviation SD Standard deviation of the signal
SD �

��������∑k

n�1(xn−μ)2
k

√

Variance VAR Variance of the signal VAR � 1
k−1 (∑k

n−1(xn − �x)2)
Variance of EMG VAR_EMG Power index VAR EMG � 1

k−1∑k
n�1x2n

V-Order V_O Non-linear detector; similar in definition
to RMS

V O � (1k∑k
n�1xv

n) 1
v

where V = 2

Waveform Length WL Measure of signal complexity; defined as
cumulative length of waveform

WL � ∑k−1
n�1 |xn+1 − xn|

Willison Amplitude W_AMP Related to the firing of motor unit action
potential

W AMP � ∑k−1
n�1[f(|xi − xi+1|)]

where f(x) = 1, if x ≥ threshold, or f(x) = 0, otherwise. And threshold = 0.01

Zero Crossing ZC Number of times the amplitudes crosses
zero amplitude level

ZC � ∑k−1
n�1[sgn(xn × xn+1) ∩ |xn − xn−1|≥ threshold]

where sgn(x) = 1, if x ≥ threshold , or sgn(x) = 0, otherwise. And
threshold = 0.01

Frequency-domain features

Variable name Abbreviation Description Equation

Avarage Energy AVE_E Mean of the squared signal AVE E � (x2)
Interquartile Range IQR Divergence regarding 75th and 25th percentile of the group IQR � Q3 − Q1

where Q1 refers to first quartile, and Q3 refers to third quartile

Dimensionless feature

Variable name Abbreviation Description Equation

Coefficient of variation CoV Quantifies the degree of variability of the signal with respect to mean CoV � σ
μ

where µ is the mean of the signal, is standard deviation
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leg) during bi- and unilateral standing. In case of significant main

effect or interaction, a series of group × laterality mixed ANOVA

and planned post-hoc tests with Bonferroni correction for multiple

comparisons were performed in each condition (bipedal stance,

single leg stance) for each dependent measures (CoP, EMG,

MoCap) to statistically investigate the effect of side-dominance

on the laterality of bi- and unilateral standing stability. The

Greenhouse–Geisser correction was used when data violated the

assumption of sphericity. Complementary post-hoc analyses

(paired-samples t-tests) were used when indicated. Cohen’s

effect size (d) was also computed as appropriate. Additionally,

effect sizes of repetition factors were expressed using partial eta

squared (ηp2) (Peat et al., 2008). In order to determine if between-

or within-group differences in CoP, EMG, and MoCap data were

associated with each other, Pearson’s correlations were computed.

Statistical significance was set at p < 0.05.

Results

Bipedal stance

Table 4, Table 5, Table 6 summarize the results of kinetic,

kinematic, and EMG data, respectively. The symmetry index

analyses showed that none of the participants stood

symmetrically during bipedal stance. Specifically, 87% of L had

greater weight-bearing on their dominant left leg (symmetry

index >0.5), while 87% of R had greater weight-bearing on their

TABLE 4 Results of CoP-related kinetic data obtained from force plate

Parameter Bipedal stance Dominant leg stance Non-dominant leg stance

L R L R L R

D ND D ND D D ND ND

Fd 1.37 (0.04) 1.37 (0.06) 1.35 (0.06) 1.36 (0.06) 1.52 (0.03) 1.53 (0.04) 1.51 (0.06) 1.54 (0.04)

mdist (mm) 3.17 (1.09) 3.03 (1.29) 3.79 (0.88) 3.50 (1.49) 8.05 (1.67) 8.62 (2.33) 7.26 (2.81) 8.36 (1.94)

mdist_AP (mm) 3.04 (1.06) 2.94 (1.28) 3.69 (0.83) 3.40 (1.50) 6.02 (1.60) 6.33 (2.00) 5.32 (2.25) 6.19 (1.72)

mdist_ML (mm) 0.76 (0.34) 0.64 (0.28) 0.76 (0.47) 0.61 (0.37) 4.18 (0.82) 4.64 (1.14) 3.81 (1.64) 4.36 (1.10)

mfreq (Hz) 0.26 (0.05) 0.26 (0.10) 0.23 (0.08) 0.24 (0.08) 0.61 (0.11) 0.66 (0.17) 0.58 (0.16) 0.67 (0.14)

mvelo (mm/sec) 4.98 (1.56) 4.59 (1.47) 5.31 (1.65) 4.76 (1.38) 30.94 (7.42) 35.01 (11.18) 26.99 (10.84) 34.54 (8.54)

mvelo_AP (mm/sec) 4.77 (1.52) 4.40 (1.46) 5.08 (1.53) 4.57 (1.32) 20.41 (5.15) 21.58 (8.66) 16.83 (7.12) 20.64 (5.79)

mvelo_ML (mm/sec) 1.26 (0.36) 1.08 (0.44) 1.26 (0.83) 1.00 (0.68) 19.09 (6.27) 23.26 (5.95) 17.48 (7.94) 23.63 (5.81)

pathlength (mm) 244.10 (76.29) 224.75 (71.79) 260.18 (80.62) 233.20 (67.47) 1515.96 (363.51) 1605.90 (305.06) 1322.45 (531.00) 1692.28 (418.53)

pathlength_AP (mm) 233.58 (74.65) 215.58 (71.43) 248.92 (74.84) 223.96 (64.89) 999.94 (252.56) 978.38 (206.57) 824.57 (348.76) 1011.39 (283.52)

pathlength_ML (mm) 61.94 (17.73) 52.77 (21.64) 61.88 (40.66) 48.83 (33.36) 935.24 (307.23) 1079.92 (224.62) 856.56 (389.17) 1158.02 (284.61)

range (mm) 11.25 (3.81) 10.33 (4.92) 12.88 (4.21) 11.22 (4.23) 28.38 (16.53) 24.03 (6.46) 19.79 (6.71) 27.24 (10.16)

range_AP (mm) 19.29 (6.56) 17.87 (7.62) 21.61 (6.33) 19.64 (8.15) 46.56 (20.44) 41.46 (11.98) 34.54 (12.56) 44.99 (16.80)

range_ML (mm) 4.85 (1.60) 3.89 (1.38) 4.54 (2.61) 3.75 (2.22) 29.99 (4.58) 29.76 (6.47) 27.16 (9.82) 31.43 (7.60)

RMS_dist (mm) 3.92 (1.32) 3.70 (1.52) 4.61 (1.01) 4.21 (1.74) 9.23 (1.84) 9.75 (2.70) 8.22 (3.06) 9.56 (2.36)

SD (mm) 2.30 (0.80) 2.11 (0.85) 2.61 (0.63) 2.32 (0.95) 4.46 (1.05) 4.56 (1.39) 3.81 (1.30) 4.63 (1.41)

SD_AP (mm) 3.80 (1.28) 3.60 (1.52) 4.49 (0.97) 4.12 (1.74) 7.55 (1.87) 7.82 (2.49) 6.57 (2.66) 7.74 (2.28)

SD_ML (mm) 0.97 (0.39) 0.79 (0.33) 0.94 (0.56) 0.74 (0.45) 5.23 (0.99) 5.75 (1.39) 4.79 (1.94) 5.49 (1.34)

area_ce (mm2/s) 157.0 (98.5) 145.1 (128) 205.6 (93.6) 190.6 (152.9) 1102.9 (463.2) 1293.4 (703.7) 959.5 (556.1) 1219.3 (613.6)

area_sw (mm2) 1.17 (0.67) 0.88 (0.40) 1.05 (0.31) 1.09 (0.57) 86.43 (42.44) 109.13 (55.22) 71.55 (38.67) 104.13 (47.02)

SampEn 0.31 (0.05) 0.30 (0.08) 0.33 (0.07) 0.29 (0.06) 0.49 (0.02) 0.50 (0.03) 0.46 (0.09) 0.50 (0.03)

SampEn_AP 0.28 (0.05) 0.27 (0.07) 0.28 (0.06) 0.27 (0.05) 0.45 (0.02) 0.45 (0.03) 0.42 (0.08) 0.44 (0.02)

SampEn_ML 0.08 (0.02) 0.07 (0.03) 0.09 (0.06) 0.07 (0.05) 0.45 (0.02) 0.46 (0.03) 0.40 (0.14) 0.46 (0.02)

Values are mean (SD) of each variables

AP, anterior-posterior direction; D, dominant leg; L, left-side dominant participants; ML, medial-lateral direction; ND, non-dominant leg; R, right-side dominant participants

fd, Fractal dimension - 95% Confidence Ellipse; mdist, Mean Distance; mdist_AP, Mean Distance in AP direction; mdist_ML, Mean Distance in ML direction; mfreq, Mean Frequency;

mvelo, Mean Velocity; mvelo_AP, Mean Velocity in AP direction; mvelo_ML, Mean Velocity in ML direction; pathlength, Path Length; pathlength_AP, Path Length in AP direction;

pathlength_ML, Path Length in ML direction; range, Range; range_AP, Range in AP direction; range_ML, Range in ML direction; RMS_dist, Root Mean Square distance; SD, Standard

Deviation; SD_AP, Standard Deviation in AP direction; SD_ML, Standard Deviation in ML direction; area_sw, Sway Area 95% Confidence; area_ce, Ellipse Area; SampEn, Sample

Enthropy; SampEn_AP, Sample Enthropy in AP direction; SampEn_ML, Sample Enthropy in ML direction

For further details on the analyzed parameters, please see Table 1.
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non-dominant left leg (symmetry index <0.5). In other words,

62.5% of participants had greater weight-bearing on their left leg,

regardless of side-dominance. Multivariate ANOVA (MANOVA)

demonstrated that there was no significant group and laterality

main effects or their interactions (all p > 0.05) on CoP-related

kinetic parameters during bipedal stance, regardless of the

dimension of the parameters (dimensionless, AP direction, ML

direction) suggesting that CoP-related kinetic data of L and R was

similar both in their dominant and non-dominant leg (Table 4).

Furthermore, no group and laterality main effects or their

interactions occurred in the kinematic data or EMG activity of

the measured muscles during bipedal stance (all p > 0.05).

TABLE 5 Results of kinematic data obtained from MoCap analysis

Parameter Bipedal stance Dominant leg stance Non-dominant leg stance

L R L R L R

D ND D ND D D ND ND

KNEE

sd (degrees) 0.28 (0.37) 0.14 (0.07) 0.20 (0.06) 0.27 (0.37) 1.75 (0.90)*† 0.84 (0.63)* 0.72 (0.37)† 1.58 (1.33)

range (degrees) 1.41 (1.56) 0.72 (0.31) 1.01 (0.33) 1.19 (1.60) 7.76 (2.92)*† 3.91 (2.38)* 3.69 (1.86)† 8.85 (6.75)

totmov (degrees) 22.63 (15.66) 16.43 (5.82) 24.56 (13.60) 28.22 (41.97) 120.64 (53.94)*† 71.80 (36.98)* 71.03 (25.83)† 138.27 (73.89)

rvelo (degrees/s) 0.62 (0.42) 0.44 (0.16) 0.66 (0.37) 0.73 (1.10) 3.45 (1.62)*† 2.09 (1.08)* 1.95 (0.72)† 4.55 (3.11)

raccel (degrees/s2) 14.95 (11.58) 10.74 (4.37) 16.55 (9.67) 19.29 (29.09) 58.35 (32.71)† 38.70 (21.62) 34.13 (12.28)† 83.44 (59.92)

ANKLE

range (degrees) 1.03 (0.51) 0.83 (0.34) 1.00 (0.24) 1.11 (0.50) 3.66 (1.14)† 2.74 (1.21)† 2.78 (1.60)*† 4.57 (2.43)*†

totmov (degrees) 23.57 (7.19) 17.32 (7.60) 20.21 (9.94) 24.17 (15.94) 72.70 (28.59)† 56.50 (19.67)† 50.61 (21.33)*† 89.49 (38.13)*†

rvelo (degrees/s) 0.63 (0.20) 0.45 (0.20) 0.55 (0.26) 0.63 (0.42) 2.05 (0.84)† 1.73 (0.64)† 1.40 (0.60)*† 2.65 (1.24)*†

raccel (degrees/s2) 17.30 (6.08) 12.06 (6.07) 14.00 (7.69) 16.90 (11.83) 37.77 (14.89)† 33.32 (13.85)† 24.36 (10.43)*† 52.36 (25.61)*†

* between-group differences during dominant/non-dominant leg stance (p < 0.05); † within-group differences between dominant and nondominant leg stance (p < 0.05)

For further details on the analyzed parameters, please see Table 2.

Values are mean (SD) of each variables. Only those MoCap variables are included in which significant difference were found between or within the groups during bi- or unilateral stance.

Range; raccel, RMS acceleration; rvelo, RMS velocity; sd, Standard Deviation; totmov, Total movement.

TABLE 6 Results for time- and frequency-domain features of EMG data

Parameter Bipedal stance Dominant leg stance Non-dominant leg stance

L R L R L R

D ND D ND D D ND ND

med. gastr.

AAC (μV) 4.93 (5.30) 3.53 (3.28) 2.60 (1.12) 4.00 (2.85) 15.62 (7.38) 16.32 (6.85)† 13.24 (5.63) 20.40 (8.29)†

DABS_M (μV) 4.93 (5.30) 3.53 (3.28) 2.60 (1.12) 4.00 (2.85) 15.62 (7.38) 16.32 (6.85)† 13.24 (5.63) 20.40 (8.29)†

ENH_WL 2.40 • 105 (1.61
• 105)

1.98 • 105 (1.09
• 105)

1.65 • 105 (0.38
• 105)

2.11 • 105 (0.91
• 105)

5.3 • 105 (1.83
• 105)

5.3 • 105 (1.79
• 105)†

4.8 • 105* (1.42
• 105)

6.6 • 105 (1.91 •

105)*†

INT_EMG
(μV)

1.10 • 105 (1.28
• 105)

7.79 • 105 (8.45
• 105)

5.39 • 105 (3.10
• 105)

9.40 • 105 (8.00
• 105)

4.1 • 105 (2.01
• 105)

4.5 • 105 (2.30
• 105)†

3.5 • 105* (1.33
• 105)

5.7 • 105 (2.31 •

105)*†

LOG_TK_EO 15.30 (1.81) 14.74 (1.50) 14.57 (1.10) 15.23 (1.52) 18.36 (1.05) 18.34 (1.24)† 18.14 (0.66) 18.84 (1.06)†

MFL (μV) 3.21 (0.38) 3.09 (0.32) 3.06 (0.23) 3.20 (0.32) 3.86 (0.23) 3.86 (0.27)† 3.82 (0.14) 3.97 (0.23)†

WL (μV) 4.93 • 105 (5.30
• 105)

3.53 • 105 (3.28
• 105)

2.60 • 105 (1.12
• 105)

4.00 • 105 (2.85
• 105)

15.6 • 105 (7.38
• 105)

15.7 • 105 (6.95
• 105)†

13.2 • 105 (5.63
• 105)

20.4 • 105 (8.29
• 105)†

* between-group differences during dominant/non-dominant leg stance (p < 0.05); † within-group differences between dominant and nondominant leg stance (p < 0.05)

For further details on the analyzed parameters, please see Table 3.

Values are mean (SD) of each variables. Only those EMG variables are included in which significant difference were found between or within the groups during bi- or unilateral stance. Note

that ENH_WL and LOG_TK_EO are unitless.

AAC, Average Amplitude Change; DABS_M, Difference Absolute Mean Value; ENH_WL, Enhanced Wavelength; INT_EMG, Integrated EMG; LOG_TK_EO, Log Teager Kaiser Energy

Opertor; MFL, Maximum Fractal Length; WL, Waveform Length.
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Single leg stance

No group and laterality main effects or their interactions

was detected by MANOVA in any of the kinetic data during

single leg stance suggesting that standing stability detected by

a variety of CoP-related parameters did not differ between R

and L (Table 4).

There was however a group by laterality interaction in knee and

ankle flexion (each Pillai’s trace = 0.286, F6,39 = 2.6, p = 0.032, ηp2 =
0.29) revealed by MANOVA. Additional mixed ANOVAs in single

kinematic parameters of the knee joint detected group × laterality

interaction on totmov (F1,22 = 6.6, p= 0.018, ηp2 = 0.23) (Figure 2) and
range (F1,22 = 8.9, p = 0.007, ηp2 = 0.29) of knee flexion with the post-

hoc analysis showing larger values in L vsR (each p≤ 0.022) (Table 5)
during dominant leg stance. In addition, this pattern was also found

in rvelo (L: 3.45 ± 1.62°/sec vs R: 2.09 ± 1.08°/sec, p = 0.027, d = 1.04)

and sd (L: 1.75 ± 0.90° vs R: 0.84 ± 0.63°, p = 0.005, d = 1.39) of knee

flexion during dominant leg stance (Figure 2; Table 5). Moreover, L

showed larger values in each measured variable of knee flexion when

standing on their dominant vs non-dominant leg (each p ≤ 0.013).

Regarding the kinematic data of ankle flexion, group by laterality

interactions were found on totmov (F1,22 = 13.6, p= 0.001, ηp2 = 0.38),
range (F1,22 = 7.0, p = 0.015, ηp2 = 0.24), rvelo (F1,22 = 11.9, p = 0.002,

ηp2 = 0.35), and raccel (F1,22 = 17.3, p< 0.001, ηp2 = 0.44) of ankle joint
angle during non-dominant leg stance with the post-hoc analysis

showing larger values in R as compared to L during non-dominant

leg stance (each p ≤ 0.05) (Figure 2; Table 5). Moreover, R always

produced larger ankle joint angle values during non-dominant vs

dominant unilateral stance (each p ≤ 0.043), however, this pattern

was the opposite in case of L showing larger values when standing on

their dominant vs non-dominant leg (each p ≤ 0.033) (Figure 2;

Table 5).

FIGURE 2
Between-group and within-group differences in CoP, EMG, and MoCap outcomes during unilateral stance. EMG outcomes: AAC, Average
Amplitude Change; DABS_M, Difference Absolute Mean Value; ENH_WL, Enhanced Wavelength; INT_EMG, Integrated EMG; LOG_TK_EO, Log
Teager Kaiser Energy Opertor;MFL, Maximum Fractal Length;WL, Waveform Length. Kinematic outcomes: raccel, RMS acceleration; range, Range;
rvelo, RMS velocity; sd, Standard deviation; totmov, Total movement.
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There was a group main effect (Pillai’s trace = 0.810, F1,22 = 2.4,

p = 0.038, ηp2 = 0.81) on medial gastrocnemius EMG activity

revealed by MANOVA. Additional statistical analyses based on

group × laterality interaction and their post-hoc analyses revealed

that ENH_WL and INT_EMG values of medial gastrocnemius were

higher in R vs L when standing on their non-dominant leg (p =

0.045, d = 0.93; p = 0.047, d = 0.94; respectively) (Figure 2; Table 6).

In addition, R had larger values in seven EMG features of medial

gastrocnemius when standing on the non-dominant vs dominant

leg (each p ≤ 0.05) (Figure 2; Table 6).

Association between dependent variables

Strong association was found only among MoCap variables

that showed between-group differences during non-dominant

unilateral standing (each r ≥ 0.778 and p < 0.001) but no

association was found with medial gastrocnemius EMG activity.

Similarly, no associations were found between thoseMoCap and

EMG variables that showed larger values for R when they were

standing on their non-dominant vs dominant leg (all p ≥ 0.05).

Discussion

We examined the effects of side-dominance on the laterality of

bi- and unilateral standing stability in healthy adults by using a

multitude of biosignal processing methods. While no differences

occurred between left- and right-side dominant participants in

kinetic, kinematic, or EMG outcomes during bipedal stance, the

symmetry index revealed that 87% of right- but only 13% of left-side

dominant participants had greater weight-bearing on their non-

dominant leg. Regarding single leg stance, larger knee but lower

ankle joint kinematic values appeared in left vs right-sided

participants during non-dominant stance. Left-vs right-sided

participants also had lower medial gastrocnemius EMG activation

during non-dominant stance. While right-side dominant

participants always produced larger values for kinematic data of

ankle joint and medial gastrocnemius EMG activation during non-

dominant vs dominant unilateral stance, this pattern was the

opposite for left-sided participants showing larger values when

standing on their dominant vs non-dominant leg, i.e., participants

had a more stable balance when standing on their right leg.

Less stable standing balance of right-side
dominant participants during non-
dominant leg stance

In the present study, participants performed both bi- and

unilateral stances, however, data acquired during unilateral

stance might be a better marker of postural control because

standing on one vs two legs poses a greater challenge for the

neural command to organize kinematics and kinetics of stability

and could thus be more informative about the role of

proprioception in standing stability. Furthermore, unilateral vs

bilateral stance challenges the postural control system and is

more often performed during daily and sports activities

(Vuillerme et al., 2001; Paillard et al., 2006).

Previous studies (Dietz et al., 1989; Goldie et al., 1989; Geurts

et al., 1993; Hoffman et al., 1998) have demonstrated no

significant differences in postural control measures between

healthy participants’ right and left limbs during unilateral

stance. However, only one of these studies (Hoffman et al.,

1998) determined the functionally dominant and non-

dominant lower limb of participants. In the present study, we

recruited healthy participants without a history of orthopedic or

neuromuscular injuries. Although some previous studies

(Freeman et al., 1965; Hoffman et al., 1998) suggested an

acute or chronic injury when asymmetry is present in

unilateral balance testing, neurodevelopmental studies

(Pompeiano, 1985; Previc, 1991) suggest laterality effects on

standing posture, i.e., the left leg subserves postural tasks

while the right leg performs tasks involving voluntary

movement. Differences in the movement characteristics

between the right and left limbs are also supported by the

association found between lower limb laterality and different

activation characteristics in the primary sensorimotor cortex and

the basal ganglia (Kapreli et al., 2006). Consequently, it may be

not surprising that the left leg is suggested to be the preferred

limb for tasks of unipedal stability (Maki, 1991).

Considering that feedback from lower extremity

proprioceptors shapes postural strategy while standing

(Allum et al., 1998), results from previous studies using JPS

measurements for the determination of proprioceptive acuity

may also serve important information about the laterality

effects on standing posture. The existing literature suggests

that right-side dominant individuals consistently sense

movements more accurately in both upper and lower

extremity joints of the non-dominant left vs the right-

dominant side (Roy and MacKenzie, 1978; Kurian et al.,

1989; Nishizawa, 1991; Goble et al., 2006; Goble and

Brown, 2007, 2008; Han et al., 2013; Negyesi et al., 2019).

Therefore, we hypothesized that right-side dominant

participants would have more stable standing balance when

they stand on their non-dominant left vs right-dominant leg.

We also expected right vs left-sided participants to have more

stable standing balance during non-dominant leg stance.

Numerous parameters can characterize postural

performance (Yamamoto et al., 2015). Traditional parameters

are based on the motion and velocity of the CoP, usually

decomposed along the AP and ML directions. Therefore, we

chose to analyze a wide variety of CoP data (Table 1). However,

interpretations of these parameters differ. Although high

postural sway, computed as the total length of the CoP path,

is often correlated with low postural stability (Paillard and Noé,
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2015), reduced sway and tightening of the motion may also

constitute a mechanism to handle fear of falling (Adkin et al.,

2002). Average CoP velocity has been proposed as a better

indicator of postural stability than CoP displacement since

joint velocities are directly used by the body as postural

feedback (Masani et al., 2003). Non-linear approaches, such as

fractal analyses, can highlight subtle changes in the postural

strategy that are not detected by the traditional linear analyses of

sway and CoP velocity (Doyle et al., 2004; Noda and Demura,

2006). Notably, these non-linear analyses can assess the

adaptability of a system, i.e. its capability to efficiently react to

external perturbations, however, they have been scarcely applied

to quantify the effects of footwear on postural control (Hausselle

et al., 2021). Nevertheless, in the present study, none of the CoP

measures differed significantly between left- and right-side

dominant participants’ dominant and non-dominant leg

during bipedal or unipedal stance. Overall, the predictive

power of CoP metrics is questionable considering that perhaps

CoP path data are not sensitive enough for detecting leg

differences in standing stability according to previous studies

using unilateral (Matsuda et al., 2008; Lopez-Fernandez et al.,

2020) and bipedal (Haddad et al., 2011) stance conditions.

Kinematic data acquired by MoCap analysis revealed larger

knee but lower ankle joint kinematic values for left vs right-sided

participants during non-dominant stance (Table 5). This finding

suggests that left and right-side dominant participants use a

different balancing strategy while standing on their non-

dominant leg. The lower ankle joint angular velocity,

acceleration, range, and total movement converged and

revealed concordant patterns with the EMG activity of their

medial gastrocnemius (Table 6). These data are in line with the

literature considering that the medial gastrocnemius muscle

contributes to maintaining balance during unilateral stance

(Tokuno et al., 2007; Hodson-Tole et al., 2013; Lima et al.,

2014) and is recruited during low-intensity tasks, i.e., quiet

standing (Jacono et al., 2004). Overall, our results suggest that

left vs right-sided participants had more stable standing balance

while standing on the non-dominant leg.

The larger medial gastrocnemius muscle activation and

kinematic values of the ankle joint angle were also present

when right-side dominant participants were standing on

their non-dominant left vs right-dominant leg. These data

suggest worse postural stability of right-as compared to left-

side dominant participants during non-dominant leg stance

and also compared to their own biosignal data acquired when

they stood on their dominant leg. On the other hand, the lack

of association between EMG data of medial gastrocnemius

and the kinematic data of the ankle suggests that the larger

activation of medial gastrocnemius muscle was not present

due to the larger rotational movements in the ankle joint. In

the present study, the activity of triceps surae was measured

by the medial gastrocnemius muscle of each leg because this

muscle plays a crucial role in controlling posture

(Krishnamoorthy et al., 2004). However, because the

soleus is also activated to control upright standing, it

might have been insightful to determine its activation in

left- and right-side dominant participants’ dominant and

non-dominant legs. The human soleus and gastrocnemius

muscles differ in many respects. The soleus is monoarticular

and the gastrocnemius is biarticular. The soleus consists of

~88% of slow-twitch muscle fibers and the gastrocnemius has

~52% of fast-twitch muscle fibers (Johnson et al., 1973;

Buchthal and Schmalbruch, 1980). Moreover, the control

of soleus and gastrocnemius during gait tasks seems to

belong to different task groups (Duysens et al., 1991).

Thus, it was suggested that despite sharing a common

distal tendon, these two muscles may have distinct

functional roles (Héroux et al., 2014). Therefore, it is

possible that each could affect the knee and/or ankle joint

function differently in left-vs right-side dominant

participants. Future studies should clarify this idea.

Less stable standing balance of left-side
dominant participants during dominant
leg stance

Because neurodevelopmental studies (Pompeiano, 1985;

Previc, 1991) indicate left-side dominance for postural

control, we expected that right hemisphere specialization

may underlie proprioceptive feedback (Naito et al., 2005;

Goble and Brown, 2007, 2008) not only in right but also in

left-side dominant participants. This idea was also supported by

findings of our previous study (Galamb et al., 2018), i.e., left-

sided participants performed a target-matching task more

accurately with their dominant left vs right knee joint.

Therefore, we hypothesized that left-sided participants may

have more stable standing balance in their dominant as

compared to their non-dominant leg and also as compared

to right-side dominant participants during dominant-leg

stance. However, our results indicated left vs right-sided

participants to have worse markers of balance i.e., larger

range and total movement of knee joint (L: 7.76 ± 2.92°, R:

3.91 ± 2.38°; L: 120.64 ± 53.94°, R: 71.8 ± 36.98°; respectively)

during dominant leg stance. Furthermore, larger values of

kinematic data for knee joint angles were present when they

stood on their dominant vs non-dominant leg consistently

suggesting a more stable standing balance of left-side

dominant participants during non-dominant leg stance

(Table 5). However, considering that no differences in CoP

or EMG data were found, the practical significance of the

kinematic data is questionable especially due to the relatively

low sample size. Future studies should recruit more strongly

left-side dominant participants to increase the statistical power

and to reveal whether between- and within-group differences

could also be found in CoP and EMG data, or in line with the
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results of previous studies (Tokuno et al., 2007; Hodson-Tole

et al., 2013; Lima et al., 2014), no differences can be found

between the dominant and non-dominant limb of left-side

dominant participants during unilateral stance.

Laterality effects on EMG and kinematic
data during bipedal stance

Although unilateral stance is considered to be a better marker

of postural control than bipedal upright standing (Vuillerme

et al., 2001; Paillard et al., 2006), we also examined left- and right-

side dominant participants’ balance stability during bipedal

stance. It might be possible that during bipedal stance, the

non-dominant leg unknowingly bears a greater portion of

body weight hence determines standing stability which in turn

would result in a larger CoP path, higher muscle activity, or

greater range of motion of lower limb joints. However, no

differences between left- and right-side dominant participants’

kinetic, kinematic, or EMG data was observed during bipedal

stance. On the other hand, our results indicate that this

hypothesis may apply to right-side dominant participants only

considering that 87% of R but only 13% of L had greater weight-

bearing on their non-dominant leg. Nevertheless, we found no

differences in any outcomes between participants’ dominant and

non-dominant legs during bipedal stance, regardless of group.

Limitations and future perspectives

One limitation of the present and all other studies considering

laterality is the difficulty in the determination of side-dominance due

to the contradictory results of functional laterality. For example, we

recruited only strongly left- and strongly right-side dominant

participants with a laterality index >0.9 according to the results of

the Edinburgh Handedness Inventory (Oldfield, 1971) and a

questionnaire for determining leg dominance (Spry et al., 1993),

still, we expected right-sided participants to have more stable

standing balance during non-dominant unilateral stance

considering the proposed hemispheric lateralization of

proprioception shown in previous neurodevelopmental

(Pompeiano, 1985; Previc, 1991), neuroanatomic (Bohannon

et al., 1986; Perennou et al., 2008; Duclos et al., 2015) and JPS

(Roy and MacKenzie, 1978; Kurian et al., 1989; Nishizawa, 1991;

Goble et al., 2006; Goble and Brown, 2007, 2008; Han et al., 2013;

Negyesi et al., 2019) studies. This leads to the conclusion that hand

and/or leg dominance could be defined based on given tasks of

questionnaires but we expect this determination not to be universal

across tasks. Future studies should consider whether they continue to

determine side-dominance based on available questionnaires or

rather define the participants’ dominant limb before the main

experiment based on their performance in the task of interest.

Also, researchers should be careful with the direct interpretation

of JPS results on proprioception considering that perceptual

judgments may not accurately reflect how proprioceptive signals

are processed and interpreted (Brown et al., 2003; Filimon et al.,

2013) or how they are linked to function (Héroux et al., 2022).

Second, we placed the bipolar EMG electrodes over each

muscle belly which might not be the most sufficient method to

describe overall muscle activity accurately. Future studies should

provide a more comprehensive overview of muscle activity using

high-density surface EMG (HD-EMG) (Drost et al., 2006) to

reveal regional distribution (e.g., proximal vs distal) of muscle

activity during bi- and unilateral stances. Future studies should

also consider analyzing biosignal data not only in a conventional

way but also using automated, intelligent, and flexible AI-based

analytical procedures that solve the difficulty of discovering

patterns that do not conform to the expected structure

(Chandola et al., 2009). For example, anomaly detection of

time series data is widely used in biomedical analyses to

detect abnormal ECG (Soga et al., 2021) or EEG (Takahashi

et al., 2020). We could not perform such an analysis due to our

experimental setup considering that healthy participants were

instructed to stand quietly and only successful trials were taken

into the analyses. Future studies recruiting both healthy

participants and patients with orthopedic or neuromuscular

disorders should gather long-lasting time-series data with

unexpected events, i.e., falls, balance problems when standing

up, sitting down, or even losses of balance during walking to label

the data for efficient anomaly detection. Detecting the underlying

mechanism of the interaction between side-dominance and

posture could serve as the basis for developing more efficient

rehabilitation strategies after an injury or even after left- or right-

hemisphere damage.

Overall, our results suggest that side-dominance affects

biomechanical and neuromuscular control strategies during

unilateral standing, which may have implications for the

understanding of mechanisms for rehabilitation.
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